Skip to main content

Advertisement

Log in

Anti-infective nitazoxanide disrupts transcription of ribosome biogenesis-related genes in yeast

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Nitazoxanide is a broad-spectrum, anti-parasitic, anti-protozoal, anti-viral drug, whose mechanisms of action have remained elusive.

Objective

In this study, we aimed to provide insight into the mechanisms of action of nitazoxanide and the related eukaryotic host responses by characterizing transcriptome profiles of Saccharomyces cerevisiae exposed to nitazoxanide.

Methods

RNA-Seq was used to investigate the transcriptome profiles of three strains of S. cerevisiae with dsRNA virus-like elements, including a strain that hosts M28 encoding the toxic protein K28. From the strain with M28, an additional sub-strain was prepared by excluding M28 using a nitazoxanide treatment.

Results

Our transcriptome analysis revealed the effects of nitazoxanide on ribosome biogenesis. Many genes related to the UTP A, UTP B, Mpp10-Imp3-Imp4, and Box C/D snoRNP complexes were differentially regulated by nitazoxanide exposure in all of the four tested strains/sub-strains. Examples of the differentially regulated genes included UTP14, UTP4, NOP4, UTP21, UTP6, and IMP3. The comparison between the M28-laden and non-M28-laden sub-strains showed that the mitotic cell cycle was more significantly affected by nitazoxanide exposure in the non-M28-laden sub-strain.

Conclusions

Overall, our study reveals that nitazoxanide disrupts regulation of ribosome biogenesis-related genes in yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:1–12

    Article  CAS  Google Scholar 

  • Armengol J, Alaniz S, Vicent A, Beltran R, Abad-Campos P, Perez-Sierra A, Garcia-Jimenez J, Ben Salem I, Souli M, Boughalleb N (2011) Effect of dsRNA on growth rate and reproductive potential of Monosporascus cannonballus. Fungal Biol 115:236–244

    Article  CAS  PubMed  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashiru O, Howe JD, Butters TD (2014) Nitazoxanide, an antiviral thiazolide, depletes ATP-sensitive intracellular Ca(2+) stores. Virology 462–463:135–148

    Article  PubMed  CAS  Google Scholar 

  • Ball SG, Tirtiaux C, Wickner RB (1984) Genetic control of L-A and L-(BC) dsRNA copy number in killer systems of Saccharomyces cerevisiae. Genetics 107:199–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bode E, Hurtle W, Norwood D (2004) Real-time PCR assay for a unique chromosomal sequence of Bacillus anthracis. J Clin Microbiol 42:5825–5831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolotin-Fukuhara M, Dumas B, Gaillardin C (2010) Yeasts as a model for human diseases. FEMS Yeast Res 10:959–960

    Article  CAS  PubMed  Google Scholar 

  • Brennan VE, Bobek LA, Bruenn JA (1981) Yeast dsRNA viral transcriptase pause products: Identification of the transcript strand. Nucleic Acids Res 9:5049–5060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broekhuysen J, Stockis A, Lins RL, De Graeve J, Rossignol JF (2000) Nitazoxanide: pharmacokinetics and metabolism in man. Int J Clin Pharmacol Ther 38:387–394

    Article  CAS  PubMed  Google Scholar 

  • Carroll SY, Stirling PC, Stimpson HE, Giesselmann E, Schmitt MJ, Drubin DG (2009) A yeast killer toxin screen provides insights into a/b toxin entry, trafficking, and killing mechanisms. Dev Cell 17:552–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Huang W, Sherman BT, Lempicki RA (2009a) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13

    Article  CAS  Google Scholar 

  • da Huang W, Sherman BT, Lempicki RA (2009b) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  • Dang W, Xu L, Ma B, Chen S, Yin Y, Chang K-O, Peppelenbosch MP, Pan Q (2018) Nitazoxanide inhibits human norovirus replication and synergizes with ribavirin by activation of cellular antiviral response. Antimicrob Agents Chemother 62:e00707–e718

    Article  PubMed  PubMed Central  Google Scholar 

  • Drinnenberg IA, Fink GR, Bartel DP (2011) Compatibility with killer explains the rise of RNAi-deficient fungi. Science 333:1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elazar M, Liu M, McKenna SA, Liu P, Gehrig EA, Puglisi JD, Rossignol JF, Glenn JS (2009) The anti-hepatitis C agent nitazoxanide induces phosphorylation of eukaryotic initiation factor 2α via protein kinase activated by double-stranded RNA activation. Gastroenterology 137:1827–1835

    Article  CAS  PubMed  Google Scholar 

  • Fink GR, Styles CA (1972) Curing of a killer factor in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 69:2846–2849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foury F (1997) Human genetic diseases: a cross-talk between man and yeast. Gene 195:1–10

    Article  CAS  PubMed  Google Scholar 

  • Fox LM, Saravolatz LD (2005) Nitazoxanide: a new thiazolide antiparasitic agent. Clin Infect Dis 40:1173–1180

    Article  CAS  PubMed  Google Scholar 

  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gekonge B, Bardin MC, Montaner LJ (2015) Short communication: nitazoxanide inhibits HIV viral replication in monocyte-derived macrophages. AIDS Res Hum Retroviruses 31:237–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M et al (1996) Life with 6000 genes. Science 274:563–567

    Article  Google Scholar 

  • Herrero N, Zabalgogeazcoa I (2011) Mycoviruses infecting the endophytic and entomopathogenic fungus Tolypocladium cylindrosporum. Virus Res 160:409–413

    Article  CAS  PubMed  Google Scholar 

  • Hillman BI, Supyani S, Kondo H, Suzuki N (2004) A reovirus of the fungus Cryphonectria parasitica that is infectious as particles and related to the Coltivirus genus of animal pathogens. J Virol 78:892–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman PS, Sisson G, Croxen MA, Welch K, Harman WD, Cremades N, Morash MG (2007) Antiparasitic drug nitazoxanide inhibits the pyruvate oxidoreductases of Helicobacter pylori, selected anaerobic bacteria and parasites, and Campylobacter jejuni. Antimicrob Agents Chemother 51:868–876

    Article  CAS  PubMed  Google Scholar 

  • Hong G, Zhang W, Li H, Shen X, Guo Z (2014) Separate enrichment analysis of pathways for up- and downregulated genes. J R Soc Interface 11:20130950

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunziker M, Barandun J, Petfalski E, Tan D, Delan-Forino C, Molloy KR, Kim KH, Dunn-Davies H, Shi Y, Chaker-Margot M et al (2016) UtpA and UtpB chaperone nascent pre-ribosomal RNA and U3 snoRNA to initiate eukaryotic ribosome assembly. Nat Commun 7:12090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Zhang T, Luo C, Jiang D, Li G, Li Q, Hsiang T, Huang J (2015) Prevalence and diversity of mycoviruses infecting the plant pathogen Ustilaginoidea virens. Virus Res 195:47–56

    Article  CAS  PubMed  Google Scholar 

  • Jovic K, Sterken MG, Grilli J, Bevers RPJ, Rodriguez M, Riksen JAG, Allesina S, Kammenga JE, Snoek LB (2017) Temporal dynamics of gene expression in heat-stressed Caenorhabditis elegans. PLoS ONE 12:e0189445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keeffe EB, Rossignol JF (2009) Treatment of chronic viral hepatitis with nitazoxanide and second generation thiazolides. World J Gastroenterol 15:1805–1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiss T (2001) Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J 20:3617–3622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291

    Article  CAS  PubMed  Google Scholar 

  • Koressaar T, Lepamets M, Kaplinski L, Raime K, Andreson R, Remm M (2018) Primer3_masker: integrating masking of template sequence with primer design software. Bioinformatics 34:1937–1938

    Article  CAS  PubMed  Google Scholar 

  • La Frazia S, Ciucci A, Arnoldi F, Coira M, Gianferretti P, Angelini M, Belardo G, Burrone OR, Rossignol JF, Santoro MG (2013) Thiazolides, a new class of antiviral agents effective against rotavirus infection, target viral morphogenesis, inhibiting viroplasm formation. J Virol 87:11096–11106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lander ES, Waterman MS (1988) Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics 2:231–239

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Maere S, Heymans K, Kuiper M (2005) BiNGO: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449

    Article  CAS  PubMed  Google Scholar 

  • Nadai C, Campanaro S, Giacomini A, Corich V (2015) Selection and validation of reference genes for quantitative real-time PCR studies during Saccharomyces cerevisiae alcoholic fermentation in the presence of sulfite. Int J Food Microbiol 215:49–56

    Article  CAS  PubMed  Google Scholar 

  • Ohtake Y, Wickner RB (1995) Yeast virus propagation depends critically on free 60S ribosomal subunit concentration. Mol Cell Biol 15:2772–2781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver SG, McCREADY SJ, Holm C, Sutherland PA, McLaughlin CS, Cox BS (1977) Biochemical and physiological studies of the yeast virus-like particle. J Bacteriol 130:1303–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park Y, Chen X, Punja ZK (2006) Molecular and biological characterization of a mitovirus in Chalara elegans (Thielaviopsis basicola). Phytopathology 96:468–479

    Article  CAS  PubMed  Google Scholar 

  • Perelygina L, Hautala T, Seppänen M, Adebayo A, Sullivan KE, Icenogle J (2017) Inhibition of rubella virus replication by the broad-spectrum drug nitazoxanide in cell culture and in a patient with a primary immune deficiency. Antivir Res 147:9

    Article  CAS  Google Scholar 

  • Pieczynska MD, de Visser JAGM, Korona R (2013) Incidence of symbiotic dsRNA ‘killer’ viruses in wild and domesticated yeast. FEMS Yeast Res 13:856–859

    Article  CAS  PubMed  Google Scholar 

  • Pöll G, Li S, Ohmayer U, Hierlmeier T, Milkereit P, Perez-Fernandez J (2014) In vitro reconstitution of yeast tUTP/UTP A and UTP B subcomplexes provides new insights into their modular architecture. PLoS ONE 9:e114898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reyes ED, Kulej K, Pancholi NJ, Akhtar LN, Avgousti DC, Kim ET, Bricker DK, Spruce LA, Koniski SA, Seeholzer SH et al (2017) Identifying host factors associated with DNA replicated during virus infection. Mol Cell Proteom 16:2079–2097

    Article  CAS  Google Scholar 

  • Rodríguez-García C, Medina V, Alonso A, Ayllón MA (2014) Mycoviruses of Botrytis cinerea isolates from different hosts. Ann Appl Biol 164:46–61

    Article  CAS  Google Scholar 

  • Rossignol JF (2014) Nitazoxanide: a first-in-class broad-spectrum antiviral agent. Antivir Res 110:94–103

    Article  CAS  PubMed  Google Scholar 

  • Rossignol JF, La Frazia S, Chiappa L, Ciucci A, Santoro MG (2009) Thiazolides, a new class of anti-influenza molecules targeting viral hemagglutinin at the post-translational level. J Biol Chem 284:29798–29808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt MJ, Breinig F (2006) Yeast viral killer toxins: Lethality and self-protection. Nat Rev Microbiol 4:212–221

    Article  CAS  PubMed  Google Scholar 

  • Schmitt MJ, Tipper DJ (1990) K28, a unique double-stranded RNA killer virus of Saccharomyces cerevisiae. Mol Cell Biol 10:4807–4815

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt MJ, Tipper DJ (1992) Genetic analysis of maintenance and expression of L and M double-stranded RNAs from yeast killer virus K28. Yeast 8:373–384

    Article  CAS  PubMed  Google Scholar 

  • Schmitt MJ, Klavehn P, Wang J, Schönig I, Tipper DJ (1996) Cell cycle studies on the mode of action of yeast K28 killer toxin. Microbiology 142:2655–2662

    Article  CAS  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherman F (2002) Getting started with yeast. Methods Enzymol 350:3–41

    Article  CAS  PubMed  Google Scholar 

  • Son M, Yu J, Kim K-H (2015) Five questions about mycoviruses. PLoS Pathog 11:e1005172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suranska H, Vranova D, Omelkova J (2016) Isolation, identification and characterization of regional indigenous Saccharomyces cerevisiae strains. Braz J Microbiol 47:181–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teste MA, Duquenne M, Francois JM, Parrou JL (2009) Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae. BMC Mol Biol 10:99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • The Gene Ontology Consortium (2015) Gene ontology consortium: going forward. Nucleic Acids Res 43:D1049–D1056

    Article  CAS  Google Scholar 

  • Thomas G (2000) An encore for ribosome biogenesis in the control of cell proliferation. Nat Cell Biol 2:E71–E72

    Article  CAS  PubMed  Google Scholar 

  • Trabattoni D, Gnudi F, Ibba SV, Saulle I, Agostini S, Masetti M, Biasin M, Rossignol JF, Clerici M (2016) Thiazolides elicit anti-viral innate immunity and reduce HIV replication. Sci Rep 6:27148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and abundance estimation from RNA-Seq reveals thousands of new transcripts and switching among isoforms. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034-1

    Article  Google Scholar 

  • Walberg MW (2000) Applicability of yeast genetics to neurologic disease. Arch Neurol 57:1129–1134

    Article  CAS  PubMed  Google Scholar 

  • Weiss A, Delproposto J, Giroux CN (2004) High-throughput phenotypic profiling of gene-environment interactions by quantitative growth curve analysis in Saccharomyces cerevisiae. Anal Biochem 327:23–34

    Article  CAS  PubMed  Google Scholar 

  • Wickner RB (1983) Killer systems in Saccharomyces cerevisiae: three distinct modes of exclusion of M2 double-stranded RNA by three species of double-stranded RNA, M1, L-A-E, and L-A-HN. Mol Cell Biol 3:654–661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wickner RB (1986) Double-stranded RNA replication in yeast: The killer system. Annu Rev Biochem 55:373–395

    Article  CAS  PubMed  Google Scholar 

  • Woolford JL Jr, Baserga SJ (2013) Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 195:643–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu S, Yamamoto N (2017) mRNA-Seq reveals accumulation followed by reduction of small nuclear and nucleolar RNAs in yeast exposed to antiviral ribavirin. FEMS Yeast Res 17:fox067

    Article  CAS  Google Scholar 

  • Yosef N, Regev A (2011) Impulse control: temporal dynamics in gene transcription. Cell 144:886–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young TW, Yagiu M (1978) A comparison of the killer character in different yeasts and its classification. Antonie Van Leeuwenhoek 44:59–77

    Article  CAS  PubMed  Google Scholar 

  • Zagulski M, Kressler D, Bécam AM, Rytka J, Herbert CJ (2003) Mak5p, which is required for the maintenance of the M1 dsRNA virus, is encoded by the yeast ORF YBR142w and is involved in the biogenesis of the 60S subunit of the ribosome. Mol Genet Genomics 270:216–224

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Ding L, Sandford AJ (2005) Selection of reference genes for gene expression studies in human neutrophils by real-time PCR. BMC Mol Biol 6:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao S, Chen Y, Chen F, Huang D, Shi H, Lo LJ, Chen J, Peng J (2019) Sas10 controls ribosome biogenesis by stabilizing Mpp10 and delivering the Mpp10–Imp3–Imp4 complex to nucleolus. Nucleic Acids Res 47:2996–3012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zorg J, Kilian S, Radler F (1988) Killer toxin producing strains of the yeasts Hanseniaspora uvarum and Pichia kluyveri. Arch Microbiol 149:261–267

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Small Grant for Exploratory Research (SGER) Program of the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2015R1D1A1A02061903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomichi Yamamoto.

Ethics declarations

Conflict of interest

No conflict of interest declared.

Ethical approval

This study did not involve human subjects and experimental animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 476 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Yamamoto, N. Anti-infective nitazoxanide disrupts transcription of ribosome biogenesis-related genes in yeast. Genes Genom 42, 915–926 (2020). https://doi.org/10.1007/s13258-020-00958-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-020-00958-0

Keywords

Navigation