Skip to main content

Advertisement

Log in

Greenhouse gas emissions from advanced oxidation processes in the degradation of bisphenol A: a comparative study of the H2O2/UV, TiO2 /UV, and ozonation processes

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

To estimate greenhouse gas (GHG) emissions and degradation rate constants (kobs) from H2O2/UV-C, TiO2/UV-C, and ozonation processes in the degradation of bisphenol A (BPA), the laboratory scale experiments were conducted. In the H2O2/UV-C process, the fastest degradation rate constant (kobs = 0.353 min−1) was observed at 4 mM of H2O2, while the minimum GHG emission was achieved at 3 mM of H2O2. In the TiO2/UV-C process, the fastest rate constant (kobs = 0.126 min−1) was achieved at 2000 mg/L of TiO2, while the minimum GHG emission was observed at 400 mg/L of TiO2. In the ozonation process, GHG emissions were minimal at 5 mg/L of O3, but the degradation rate constant kept on increasing as the O3 concentration increased. There were three major types of GHG emissions in the advanced oxidation processes (AOPs). In the ozonation process, most of the GHG emissions were generated by electricity consumption. TiO2/UV-C process accounted for a significant portion of the GHGs generated by the use of chemicals. Finally, the H2O2/UV-C process produced similar GHG emissions from both chemical inputs and electricity consumption. The carbon footprint calculation revealed that for the treatment of 1 m3 of water contaminated with 0.04 mM BPA, the H2O2/UV-C process had the smallest carbon footprint (0.565 kg CO2 eq/m3), followed by the TiO2/UV-C process (3.445 kg CO2 eq/m3) and the ozonation process (3.897 kg CO2 eq/m3). Our results imply that the increase in removal rate constant might not be the optimal parameter for reducing GHG emissions during the application of these processes.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beltran FJ (2003) Ozone reaction kinetics for water and wastewater systems. CRC Press

  • Biń AK, Sobera-Madej S (2012) Comparison of the advanced oxidation processes (UV, UV/H2O2, and O3) for the removal of antibiotic substances during wastewater treatment. Ozone Sci Eng 34(2):136–139

    Article  Google Scholar 

  • Bolton JR, Bircher KG, Tumas W, Tolman CA (2001) Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric-and solar-driven systems (IUPAC Technical Report). Pure Appl Chem 73(4):627–637

    Article  CAS  Google Scholar 

  • Broséus R, Vincent S, Aboulfadl K, Daneshvar A, Sauvé S, Barbeau B, Prévost M (2009) Ozone oxidation of pharmaceuticals, endocrine disruptors and pesticides during drinking water treatment. Water Res 43(18):4707–4717

    Article  Google Scholar 

  • Drewes J, Khan S (2015) Contemporary design, operation, and monitoring of potable reuse systems. J Water Reuse Desalination 5(1):1–7

    Article  CAS  Google Scholar 

  • Eggleston S, Buendia L, Miwa K, Ngara T and Tanabe K (2006) 2006 IPCC guidelines for national greenhouse gas inventories, Institute for Global Environmental Strategies Hayama, Japan

  • El-Fadel M, Massoud M (2001) Methane emissions from wastewater management. Environ Pollut 114(2):177–185

    Article  CAS  Google Scholar 

  • Frischknecht R, Jungbluth N, Althaus H-J, Hischier R, Doka G, Dones R, Heck T, Hellweg S, Wernet G and Nemecek T (2007) Overview and methodology. Data v2. 0 (2007). Ecoinvent report No. 1, Ecoinvent centre

  • Garoma T, Matsumoto S (2009) Ozonation of aqueous solution containing bisphenol A: effect of operational parameters. J Hazard Mater 167(1–3):1185–1191

    Article  CAS  Google Scholar 

  • Griffith DR, Barnes RT, Raymond PA (2009) Inputs of fossil carbon from wastewater treatment plants to US rivers and oceans. Environ Sci Technol 43(15):5647–5651

    Article  CAS  Google Scholar 

  • Gu Y, Dong Y-n, Wang H, Keller A, Xu J, Chiramba T, Li F (2016) Quantification of the water, energy and carbon footprints of wastewater treatment plants in China considering a water–energy nexus perspective. Ecol Indic 60:402–409

    Article  CAS  Google Scholar 

  • Gultekin I, Mavrov V, Ince NH (2009) Degradation of bisphenol-A by ozonation. J Adv Oxid Technol 12(2):242–248

    CAS  Google Scholar 

  • Hwang K-L, Bang C-H, Zoh K-D (2016) Characteristics of methane and nitrous oxide emissions from the wastewater treatment plant. Bioresour Technol 214:881–884

    Article  CAS  Google Scholar 

  • Im J-K, Son H-S, Kang Y-M, Zoh K-D (2012) Carbamazepine degradation by photolysis and titanium dioxide photocatalysis. Water Environ Res 84(7):554–561

    Article  CAS  Google Scholar 

  • Kanakaraju D, Glass BD, Oelgemöller M (2018) Advanced oxidation process-mediated removal of pharmaceuticals from water: a review. J Environ Manag 219:189–207

    Article  CAS  Google Scholar 

  • Kaneco S, Rahman MA, Suzuki T, Katsumata H, Ohta K (2004) Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide. J Photochem Photobiol A Chem 163(3):419–424

    Article  CAS  Google Scholar 

  • Kang Y-M, Kim M-K, Zoh K-D (2018) Effect of nitrate, carbonate/bicarbonate, humic acid, and H2O2 on the kinetics and degradation mechanism of bisphenol-A during UV photolysis. Chemosphere 204:148–155

    Article  CAS  Google Scholar 

  • Kang Y-M, Kim M-K, Kim T, Kim T-K, Zoh K-D (2019) Occurrence and fate of micropollutants in private wastewater treatment facility (WTF) and their impact on receiving water. Environ Manag 64(5):650–660

    Article  Google Scholar 

  • KEITI (2003) Korea Environmental Industry & Technology Institute

  • Kim T-K, Kim T, Jo A, Park S, Choi K, Zoh K-D (2018) Degradation mechanism of cyanide in water using a UV-LED/H2O2/Cu2+ system. Chemosphere 208:441–449

    Article  CAS  Google Scholar 

  • Mander Ü, Dotro G, Ebie Y, Towprayoon S, Chiemchaisri C, Nogueira SF, Jamsranjav B, Kasak K, Truu J, Tournebize J (2014) Greenhouse gas emission in constructed wetlands for wastewater treatment: a review. Ecol Eng 66:19–35

    Article  Google Scholar 

  • Mannina G, Ekama G, Caniani D, Cosenza A, Esposito G, Gori R, Garrido-Baserba M, Rosso D, Olsson G (2016) Greenhouse gases from wastewater treatment—a review of modelling tools. Sci Total Environ 551:254–270

    Article  Google Scholar 

  • Masuda S, Sano I, Hojo T, Li Y-Y, Nishimura O (2018) The comparison of greenhouse gas emissions in sewage treatment plants with different treatment processes. Chemosphere 193:581–590

    Article  CAS  Google Scholar 

  • Meneses M, Pasqualino JC, Castells F (2010) Environmental assessment of urban wastewater reuse: treatment alternatives and applications. Chemosphere 81(2):266–272

    Article  CAS  Google Scholar 

  • Miklos DB, Remy C, Jekel M, Linden KG, Drewes JE, Hübner U (2018) Evaluation of advanced oxidation processes for water and wastewater treatment–aa critical review. Water Res 139:118–131

    Article  CAS  Google Scholar 

  • Mohapatra D, Brar S, Tyagi R, Surampalli R (2010) Physico-chemical pre-treatment and biotransformation of wastewater and wastewater sludge–fate of bisphenol A. Chemosphere 78(8):923–941

    Article  CAS  Google Scholar 

  • Munoz I, Rodriguez A, Rosal R, Fernandez-Alba AR (2009) Life cycle assessment of urban wastewater reuse with ozonation as tertiary treatment: a focus on toxicity-related impacts. Sci Total Environ 407(4):1245–1256

    Article  CAS  Google Scholar 

  • Muruganandham M, Swaminathan M (2004) Photochemical oxidation of reactive azo dye with UV-H2O2 process. Dyes Pigments 62(3):269–275

    Article  CAS  Google Scholar 

  • Park C, Choi E, Jeon H, Lee J, Sung B, Cho Y, Ko K (2014) Effect of nitrate on the degradation of bisphenol A by UV/H2O2 and ozone/H2O2 oxidation in aqueous solution. Desalin Water Treat 52(4–6):797–804

    Article  CAS  Google Scholar 

  • Parravicini V, Svardal K, Krampe J (2016) Greenhouse gas emissions from wastewater treatment plants. Energy Procedia 97:246–253

    Article  CAS  Google Scholar 

  • Pasqualino JC, Meneses M, Castells F (2011) Life cycle assessment of urban wastewater reclamation and reuse alternatives. J Ind Ecol 15(1):49–63

    Article  CAS  Google Scholar 

  • Raluy R, Serra L, Uche J (2005) Life cycle assessment of desalination technologies integrated with renewable energies. Desalination 183(1–3):81–93

    Article  CAS  Google Scholar 

  • Reddy PVL, Kim K-H, Kavitha B, Kumar V, Raza N, Kalagara S (2018) Photocatalytic degradation of bisphenol A in aqueous media: a review. J Environ Manag 213:189–205

    Article  CAS  Google Scholar 

  • Riga A, Soutsas K, Ntampegliotis K, Karayannis V, Papapolymerou G (2007) Effect of system parameters and of inorganic salts on the decolorization and degradation of Procion H-exl dyes. Comparison of H2O2/UV, Fenton, UV/Fenton, TiO2/UV and TiO2/UV/H2O2 processes. Desalination 211(1–3):72–86

    Article  CAS  Google Scholar 

  • Robescu LD, Presură E (2017) Reducing carbon footprint of a wastewater treatment plant using advanced treatment and renewable energy sources. Environ Eng Manag J (EEMJ) 16(5):1055–1062

    Article  CAS  Google Scholar 

  • Shahabadi MB, Yerushalmi L, Haghighat F (2009) Impact of process design on greenhouse gas (GHG) generation by wastewater treatment plants. Water Res 43(10):2679–2687

    Article  Google Scholar 

  • Sharma J, Mishra I, Kumar V (2015) Degradation and mineralization of Bisphenol A (BPA) in aqueous solution using advanced oxidation processes: UV/H2O2 and UV/S2O82− oxidation systems. J Environ Manag 156:266–275

    Article  CAS  Google Scholar 

  • Singh P, Kansal A, Carliell-Marquet C (2016) Energy and carbon footprints of sewage treatment methods. J Environ Manag 165:22–30

    Article  Google Scholar 

  • Tran BC, Teil MJ, Blanchard M, Alliot F, Chevreuil M (2015) BPA and phthalate fate in a sewage network and an elementary river of France. Influence of hydroclimatic conditions. Chemosphere 119:43–51

    Article  CAS  Google Scholar 

  • Tsai W-T, Lee M-K, Su T-Y, Chang Y-M (2009) Photodegradation of bisphenol-A in a batch TiO2 suspension reactor. J Hazard Mater 168(1):269–275

    Article  CAS  Google Scholar 

  • Umar M, Roddick F, Fan L, Aziz HA (2013) Application of ozone for the removal of bisphenol A from water and wastewater–a review. Chemosphere 90(8):2197–2207

    Article  CAS  Google Scholar 

  • Wang R, Ren D, Xia S, Zhang Y, Zhao J (2009) Photocatalytic degradation of bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR). J Hazard Mater 169(1–3):926–932

    CAS  Google Scholar 

  • Wong C, Chu W (2003) The direct photolysis and photocatalytic degradation of alachlor at different TiO2 and UV sources. Chemosphere 50(8):981–987

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Korea Environmental Industry & Technology Institute (KEITI) through the project for developing innovative drinking water and wastewater technologies funded by Korea Ministry of Environment (MOE) (NO. 2019002710001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Duk Zoh.

Additional information

Responsible editor: Vítor Pais Vilar

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• We estimated GHG emission during H2O2/UV, TiO2/UV, and O3 reactions of bisphenol A.

• Carbon footprint concept was used to compare GHG emission in different AOP processes.

• Conditions to increase the rate constant may not be optimal in terms of GHG emission.

• H2O2/UV process showed the smallest carbon footprint among the AOP processes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, YM., Kim, TK., Kim, MK. et al. Greenhouse gas emissions from advanced oxidation processes in the degradation of bisphenol A: a comparative study of the H2O2/UV, TiO2 /UV, and ozonation processes. Environ Sci Pollut Res 27, 12227–12236 (2020). https://doi.org/10.1007/s11356-020-07807-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-07807-3

Keywords

Navigation