사업성과
연구성과
Falling bacterial communities from the atmosphere
년도 2020
날짜 2020 Dec 10
페이지 /
학회지명
15(1):22 / Environmental Microbiomes
논문저자 Cheolwoon Woo 1, Naomichi Yamamoto 2 3
Link 관련링크 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066439/ 154회 연결
Affiliations
1 Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea.
2 Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea. nyamamoto@snu.ac.kr.
3 Institute of Health and Environment, Seoul National University, Seoul, 08826, Republic of Korea. nyamamoto@snu.ac.kr.

Abstract
Background: Bacteria emitted into the atmosphere eventually settle to the pedosphere via sedimentation (dry deposition) or precipitation (wet deposition), constituting a part of the global cycling of substances on Earth, including the water cycle. In this study, we aim to investigate the taxonomic compositions and flux densities of bacterial deposition, for which little is known regarding the relative contributions of each mode of atmospheric deposition, the taxonomic structures and memberships, and the aerodynamic properties in the atmosphere.

Results: Precipitation was found to dominate atmospheric bacterial deposition, contributing to 95% of the total flux density at our sampling site in Korea, while bacterial communities in precipitation were significantly different from those in sedimentation, in terms of both their structures and memberships. Large aerodynamic diameters of atmospheric bacteria were observed, with an annual mean of 8.84 μm, which appears to be related to their large sedimentation velocities, with an annual mean of 1.72 cm s- 1 for all bacterial taxa combined. The observed mean sedimentation velocity for atmospheric bacteria was larger than the previously reported mean sedimentation velocities for fungi and plants.

Conclusions: Large aerodynamic diameters of atmospheric bacteria, which are likely due to the aggregation and/or attachment to other larger particles, are thought to contribute to large sedimentation velocities, high efficiencies as cloud nuclei, and large amounts of precipitation of atmospheric bacteria. Moreover, the different microbiotas between precipitation and sedimentation might indicate specific bacterial involvement and/or selective bacterial growth in clouds. Overall, our findings add novel insight into how bacteria participate in atmospheric processes and material circulations, including hydrological circulation, on Earth.

Keywords: 16S rRNA gene; Aero-microbiology; Aerobiology; Bioaerosols; Bioprecipitation; Biosedimentation.

서울대학교 보건대학원 환경보건학과 BK21연구단

TEL : 02) 880-2836